

CLIMATE CHANGE PROJECTIONS FOR INDIVIDUAL TREE SPECIES

RIDGE AND VALLEY (SUBREGION 4)

The region's forests will be affected by a changing climate during this century. A team of forest managers and researchers created an assessment that describes the vulnerability of forests in the Mid-Atlantic region (Butler-Leopold et al. in review). This report includes information on the current landscape, observed climate trends, and a range of projected future climates. It also describes many potential climate change impacts to forests and summarizes key vulnerabilities for major forest types. This handout is summarized from the full assessment.

TREE SPECIES INFORMATION:

This assessment uses two climate scenarios to "bracket" a range of possible futures. These future climate projections were used with two forest impact models (Tree Atlas and LANDIS) to provide information about how individual tree species may respond to a changing climate. More information on the climate and forest impact models can be found in the assessment. Results for "low" and "high" climate scenarios can be compared on page 2 of this handout.

SPECIES	ADDITIONAL CONSIDERATIONS - 30 MOST COMMON SPECIES				
LIKELY TO DECREASI					
American basswood	Tolerates shade, susceptible to fire				
Bigtooth aspen	Early-successional colonizer, susceptible to drought				
Blackgum	Shade tolerant, fire adapted				
MAY DECREASE					
American beech	Susceptible to beech bark disease, very shade tolerant				
Eastern white pine	Good disperser, but susceptible to drought and insects				
Serviceberry	Competitive colonizer, susceptible to drought				
Striped maple	Shade tolerant and easily established, susceptible to drought				
Sugar maple	Grows across a variety of sites, tolerates shade				
Sweet birch	Susceptible to drought, fire topkill, and insects				
White ash	Emerald ash borer causes mortality				
NO CHANGE					
Black locust	Early-successional colonizer, susceptible to insect pests				
Pitch pine	Early-successional colonizer, susceptible to insect pests				
MIXED MODEL RESU	LTS				
Black cherry	Susceptible to insects and fire, somewhat drought-tolerant				
Chestnut oak	Establishes from seed or sprout, adapted to fire				

Remember that models are just tools, and they're not perfect. Model projections don't account for some factors that could be modified by climate change, like droughts, wildfire activity, and invasive species. If a species is rare or confined to a small area, Tree Atlas results may be less reliable. These factors, and others, could cause a particular species to perform better or worse than a model projects. Human choices will also continue to influence forest distribution, especially for tree species that are projected to increase. Planting programs may assist the movement of future-adapted species, but this will depend on management decisions.

Despite these limits, models provide useful information about future expectations. It's perhaps best to think of these projections as indicators of possibility and potential change. The model results presented here were combined with information from published reports and local management expertise to draw conclusions about potential risk and change in the region's forests.

SPECIES	ADDITIONAL CONSIDERATIONS - 30 MOST COMMON SPECIES					
MIXED MODEL RES	ULTS CONTINUED					
Eastern hemlock	Hemlock woolly adelgid causes mortality					
Northern red oak	Susceptible to insect pests					
Red maple	Competitive colonizer, tolerant of disturbance					
Tulip tree	Competitive colonizer tolerant of diverse sites					
MAY INCREASE						
Black oak	Drought tolerant, susceptible to insect pests and diseases					
Eastern hophornbean	n Grows across a variety of sites, tolerates shade					
Mockernut hickory	Susceptible to fire topkill					
Pignut hickory	Susceptible to insect pests and drought					
Sassafras	Early-successional colonizer, susceptible to fire topkill					
Scarlet oak	Establishes from seed & sprout, susceptible to fire & disease					
Virginia pine	Intolerant of shade and pollution					
White oak	Fire-adapted, grows on a variety of sites					
Slippery elm	Shade-tolerant, susceptible to disease and fire topkill					
LIKELY TO INCREAS	E					
Bear oak:scrub oak	Shade intolerant, susceptible to fire topkill and flood					
Black walnut	Good disperser, but intolerant of shade and drought					
Flowering dogwood	Shade tolerant					

FUTURE PROJECTIONS

Data for the end of the century are summarized for two forest impact models under two climate change scenarios. The Climate Change Tree Atlas (www.fs.fed.us/nrs/atlas) models future suitable habitat, while LANDIS models changes in forest growth over time (future tree density presented in this table; additional data are available in the assessment).

▲ INCREASE

Projected increase of >20% by 2100

NO CHANGE

Little change (<20%) projected by 2100

▼ DECREASE

Projected decrease of >20% by 2100

★ NEW HABITAT

Tree Atlas projects new habitat for species not currently present

ADAPTABILITY

Factors not included in the Tree Atlas model, such as the ability to respond favorably to disturbance, may make a species more or less able to adapt to future stressors (see reverse page for considerations for the 30 most common species).

- high
 Species may perform
 better than modeled
 medium
- low
 Species may perform worse than modeled

LOW CLIMATE CHANGE HIGH CLIMATE
(PCM B1) CHANGE (GFDL A1FI)

TREE TREE **SPECIES ATLAS LANDIS ATLAS LANDIS ADAPT** American basswood American beech ▼ \blacksquare American chestnut American elm lack▼ American hornbeam lackBear oak:scrub oak Bigtooth aspen ▼ Bitternut hickory + Black cherry • Black hickory * * **Black locust** Black oak lack \blacktriangle Black spruce ▼ Black walnut Black willow \blacktriangle Blackgum + Blackjack oak * Boxelder + ▼ Bur oak + Butternut Chestnut oak lackChinkapin oak ▼ Chokecherry ▼ Cucumbertree Eastern cottonwood ▼ Eastern hemlock lack▼ Eastern hophornbeam lackEastern redbud \blacktriangle Eastern redcedar lackEastern white pine Flowering dogwood ▼ Gray birch Green ash lackHackberry \blacksquare + Honeylocust lack+ Loblolly pine N/A \blacktriangle Mockernut hickory + Northern catalpa N/A * Northern red oak ▼ lacklack+ Osage-orange

	TREE		TREE		
SPECIES	ATLAS	LANDIS	ATLAS	LANDIS	ADAPT
Paper birch			_		•
Pawpaw	•		•		
Persimmon					+
Pignut hickory	•	<u> </u>		A	•
Pin cherry	V				
Pin oak	•				-
Pitch pine	•		•		•
Post oak	*		*		+
Quaking aspen	V		V		
Red maple	•	•	_	A	+
Red mulberry	•		A		
Red pine	_		V		•
Red spruce	V	V	V	V	-
River birch	•		A		
Sassafras	A		•		
Scarlet oak	•	A	_	•	
Serviceberry	•		V		
Shagbark hickory	•		A		
Shellbark hickory	V		A		
Shingle oak	•		_		
Shortleaf pine					•
Silver maple	V		A		+
Slippery elm	•				
Southern red oak	•		A		+
Striped maple	•		V		
Sugar maple	•	•	_	V	+
Sugarberry	*		*		
Swamp chestnut oak	•				•
Sweet birch	•				-
Sweetgum	A		A		
Sycamore	_				
Table Mountain pine	•		•		+
Tamarack (native)	•		_		-
Tulip tree	A	•	V	•	+
Virginia pine	•		A		
White ash	•	•	V	•	-
White oak	•	•	A	_	+

LOW CLIMATE CHANGE

(PCM B1)

HIGH CLIMATE

CHANGE (GFDL A1FI)

SOURCE: Butler-Leopold et al. (in review). Mid-Atlantic forest ecosystem vulnerability assessment and synthesis: a report from the Mid-Atlantic Climate Change Response Framework, Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. www.forestadaptation.org/mid-atlantic/vulnerability-assessment

▼

White spruce

Winged elm

Yellow birch