9 WAYS THAT CLIMATE CHANGE WILL AFFECT FORESTS

A Synthesis of Anticipated Impacts in West Virginia and the Central Appalachian Region
Climate Change Impacts

1) Longer Growing Season
2) Shorter Winters
3) Potential for Summer Drought
4) CO₂ Fertilization
5) Changes in Suitable Habitat
6) Extreme Events
7) Wildfire Risk
8) Forest Pests and Diseases
9) Invasive Plants
Climate Change Impacts

1) Longer Growing Season
2) Shorter Winters
3) Potential for Summer Drought
4) CO$_2$ Fertilization
5) Changes in Suitable Habitat
6) Extreme Events
7) Wildfire Risk
8) Forest Pests and Diseases
9) Invasive Plants
1: Longer Growing Season

Warmer temps result in longer growing seasons

- Projected to increase 25+ days
- Evidence of phenological shifts

Longer period for plant growth

Kunkel et al. 2013

Jeong et al. 2011, Julien and Sobrino 2009
1: Longer Growing Season

Warmer temps result in longer growing seasons
- Evidence of phenological shifts
- Projected to increase 3-7+ weeks

Longer period for plant growth

Potential risks:
- Early bud break/loss of cold hardening
- Frost damage during spring freezing

Melillo et al. 2014, Nelson Center 2014
2: **Shorter Winter (Less Snow)**

Projected decreases in snow fall, cover, and depth

- 20-40% decreases in snowfall over the next 70 years
- Greatest loss in December/January

![Projected decreases in snowfall map](image-url)

Figure: Kapnick and Delworth 2013
2: Shorter Winter (Less Snow)

Projected decreases in snow fall, cover, and depth

- 20-40% decreases in snowfall
- Greatest loss in December/January

Decreased snowpack

- Decreased soil frost and root damage in cold temps
- Warmer soil temperatures and altered processes

Sinha & Cherkauer 2010; Cambell 2010
2: Shorter Winter (Less Snow, More Rain)

Precipitation is projected to increase = more rain

2: **Shorter Winter (Less Snow, More Rain)**

Precipitation is projected to increase = more rain

Altered streamflow timing and amount

- Earlier spring peak flows
- Potential increases in flashiness and episodic high flows
- Potential declines in summer seasonal stream flow

3: *Potential for Summer Drought*

Greater uncertainty about future precipitation, but increased risk of summer moisture stress.
4: CO₂ Fertilization

Benefits

- Increased photosynthesis
- Increased water use efficiency

4: CO$_2$ Fertilization

Limits to CO$_2$ fertilization

- Varies by species and site
- Nutrient deficiencies (especially N)
- Sensitive to ozone pollution
- Limited sink strength
- Limited evidence of long-term sequestration
- Any productivity increases may be offset by reductions from increased drought stress or disturbance

5: Changes in Suitable Habitat

[Sugar maple maps]

[Chesnut oak maps]

[Red spruce maps]
5: Changes in Suitable Habitat

Habitat based on:
- Temperature
- Precipitation
- Elevation
- Latitude
- Soils
- Slope & Aspect
- Land use
- Competition
- Past management
5: Changes in Suitable Habitat

Habitat based on:

- Temperature
- Precipitation
- Elevation
- Latitude
- Soils
- Slope & Aspect
- Land use
- Competition
- Past management

Climate Change Atlas:
What happens to tree and bird habitat when climate changes?

- 134 Trees
- 147 Birds

Iverson et al. 2008; Atlas website: www.fs.fed.us/nrs/atlas/
5: Changes in Suitable Habitat

Habitat based on:

- Temperature
- Precipitation
- Elevation
- Latitude
- Soils
- Slope & Aspect

Black Cherry: Current Habitat (modeled)

PCM B1 (Less Change)
GFDL A1FI (More Change)

www.fs.fed.us/nrs/atlas/
5: Changes in Suitable Habitat

Habitat based on:
- Temperature
- Precipitation
- Elevation
- Latitude
- Soils
- Slope & Aspect

Tulip Tree: Current Habitat (modeled)

PCM B1 (Less Change)

GFDL A1FI (More Change)

www.fs.fed.us/nrs/atlas/
5: Changes in Suitable Habitat

- **Winners**
 - Black oak
 - Chestnut oak
 - Pignut hickory
 - Scarlet oak
 - White oak
 - Post oak
 - Shortleaf pine
 - Flowering dogwood

- **Losers**
 - American beech
 - Eastern hemlock
 - Red spruce
 - Balsam fir
5: Changes in Suitable Habitat

- Immense lag times
 - Range shifts ≠ instant catastrophic dieback

- Factors causing change will increase over time
 - Temperature
 - Moisture
 - Competition

- Mature and established trees should fare better
 - Developed root system
 - Greater carbohydrate reserves

- Game changers: Disturbance, Land use, ...

Dale et al. 2001, Iverson et al. 2008
6: **Extreme Events**

- Heavy precipitation
- Ice storms
- “Events” are not well modeled
- Heat waves/droughts
- Wind storms
- Hurricanes

Charleston, WV 2015. Photo by Todd Harrell

Parsons, WV 2012. Photo by Norman Lenburg
7: **Wildfire Risk**

Fire may increase:
- Warmer/drier summers
- Increased stress or mortality from less suitable conditions
- Shift toward fire-associated species like oaks and pines

Fire may not change:
- Spring/early summer moisture
- Current regeneration of more mesic species
- Spatial patterns of land use and fragmentation
- Fire suppression

North Mountain fire 2013. Photo by Darin Vance
Indirect: Stress from other impacts increases susceptibility

Direct:

- Pests migrating northward
- Decreased probability of cold lethal temperatures
- Accelerated lifecycles

9: Invasive Plants

Indirect: Stress or disturbance from other impacts can affect the potential for invasion or success

Direct:
- Expanded ranges under warmer conditions
- Increased competitiveness from ability of some plants to take advantage of elevated CO$_2$

Kurtz 2013

Dukes et al. 2009, Rustad et al. 2011
Climate Change Impacts

1) Longer Growing Season
2) Shorter Winters
3) Potential for Summer Drought
4) CO$_2$ Fertilization
5) Changes in Suitable Habitat
6) Extreme Events
7) Wildfire Risk
8) Forest Pests and Diseases
9) Invasive Plants

What conclusions can we draw from all this?
DRIVERS:
Increasing temperatures, decreased snow cover, decreased soil moisture

DOMINANT SPECIES:
red spruce, balsam fir, yellow birch, eastern hemlock, red maple, sweet birch, black ash......

STRESSORS:
Acid deposition, pests and diseases, disturbance

ADAPTIVE CAPACITY:
geographically limited, species already declining from pests, currently expanding to former range, highest elevations may be somewhat buffered from most severe changes

Vulnerability: **Spruce-fir**

High Vulnerability
Vulnerability: **Northern Hardwoods**

High Vulnerability

Drivers:
Decreasing precipitation, increasing temperatures: reduced soil moisture during summer and fall

Dominant Species:
American beech, eastern hemlock (keystone where occurs), sugar maple, tulip tree, black cherry, white ash, red spruce

Stressors:
Increased drought, pests and diseases, disturbance

Adaptive Capacity:
High diversity, geographically limited, combined effects of acid deposition, increased temperatures and drought
Vulnerability: *Dry/mesic Oak Forest*

Low-Moderate Vulnerability

Drivers:
Dry to mesic soils, gap-phase dynamics, fire was historically important

Dominant Species:
Pignut hickory, white oak, mockernut hickory, shagbark hickory, chestnut oak, scarlet oak, black oak

Stressors:
Increased drought, pests and diseases, Ailanthus and other invasive plants

Adaptive Capacity:
Past shift to mesic species (sugar maple, beech, etc.) wide distribution, variety of habitat conditions, increased fire could help oak regen.
Vulnerability: *Forest Ecosystems*

Forest communities will be affected differently

May have greater risk:
- Low diversity
- Static
- Threatened, rare, or endangered
- Already in decline
- Fragmented

May have less risk:
- More diversity (species, genetics, ...)
- Adapted to disturbance
- Wider ecological range of tolerances
- Currently increasing
- Larger, contiguous blocks
Summary

- **Uncertainty is guaranteed**
 - Consider a **range** of future conditions
 - Uncertainty varies across scales

- **Expect a new mixture of stresses**
 - Mostly familiar stresses, but new combos, timing, etc.

- **Severity is affected by local conditions**
 - Consider broad projections, adjust to local reality

- **Changes occur gradually**
 - Small changes now can have big impact later
Activity: How does climate change affect your work?

1. Take 20 minutes to fill out worksheets on your own
 • What major challenges do you deal with at work?
 • What are some ways that this will be affected by climate change?
 • What are some general ways to overcome these challenges?
 • What are some really specific ways to address these challenges?

2. Choose one to share with your table

3. Each group will choose one or two to share with the room
 • What are some common themes being discussed in your group?
 • What are solutions that seem to have multiple benefits?
 • How might you explain adaptation to a colleague or client?