

Climate Change Effects on New England's Forests

Dr. Pamela Templer

Boston University ptempler@bu.edu

Air Pollution Climate Change **Introduced Pests** Land-Use Change Urbanization

Atmospheric CO₂ at Mauna Loa Observatory, Hawaii

Global Temperatures Rising

Winter Air
Temperatures
Rising and
Snowpack
Shrinking

Hubbard Brook

Winter Air Temperatures Rising and Snowpack Shrinking

Hubbard Brook

THEPHOENIX

Help, the mountains are melting!

The case of the disappearing ski slopes

By NOAH SCHAFFER | November 7, 2012

CHRONICLEONLINE

Nov. 10, 2010

In 100 years, maple sap will flow a month earlier

By Krishna Ramanujan

As the climate warms this century, maple syrup production in the Northeast is expected to slightly decline by 2100, and the window for tapping trees will move earlier by about a month, reports a Cornell study.

Currently, the best times to tap maple trees are within an eight-week window from late winter to early spring when temperatures cause freezing at night and thawing by day.

"By 2100, we can expect to begin tapping maples closer to Christmas in the Northeast," said Brian Chabot, professor of ecology and evolutionary biology and a co-author of a paper on climate changes and maple sugar production that appeared earlier this year in the journal Climate Change.

Sap flow is related to pressure changes in the trees' xylem, which are tubes beneath the bark that carry sap from the maple's roots up to the leaves. As maple trees freeze in winter, gases are pushed out of the xylem into surrounding tissues, and negative pressure is created within the xylem compared with atmospheric pressure. When the trees thaw, the gases expand and dissolve back into the san

Brian Chaho

Mike Farrell, director of the Uihlein Sugar Maple Research and Extension Field Station in Lake Placid, N.Y., taps a maple tree.

Increased Winter Temperatures and Reduced Snowpack Extent Over Next 100 Years in Northeastern United States

Reduced Snowpack Leads to Soil Freezing

Reduced Snowpack Leads to Soil Freezing

Wikipedia.org

Could damage biota in forests:

Plant Roots

Microbes

Arthropods

Water & Air Quality

Could damage biota in forests:

Plant Roots

Microbes

Arthropods

Water & Air Quality Carbon Storage in Forests

Could damage biota in forests:

Plant Roots

Microbes

Arthropods

Water & Air Quality Carbon Storage in Forests

Why does this matter?

Could damage biota in forests:

Plant Roots

Microbes

Arthropods

Water & Air Quality Carbon Storage in Forests

Why does this matter?
Carbon uptake by ecosystems offsets fossil fuel emissions of CO₂ by ~30%

Carbon Uptake by Forests Offsets 30% of CO₂ Emissions from Fossil Fuel Combustion

Do reduced snowpack and increased soil frost decrease nutrient uptake by trees and ecosystem carbon storage in forests?

Snow-Removal Experiments at Hubbard Brook and Harvard Forest

Snow-Removal Experiments at Hubbard Brook and Harvard Forest

n = 4 reference and 4 treatment plots at Hubbard Brookn = 3 reference and 3 treatment plots at Harvard Forest

Snow and Soil Frost Depth Measurements

Snow Depth

Frost tubes with methylene blue dye

Snow and Soil Frost Depth Measurements

Snow Depth

Frost tubes with methylene blue dye

Smaller Snowpack Increases Soil Frost Depth

Sorensen et al. (2016) *Biogeochemistry*

Soil Frost Induces Root Injury of Sugar Maple Trees

Commerford et al. (2013) Oecologia

Soil Frost Induces Root Injury of Sugar Maple Trees

Commerford et al. (2013) Oecologia

Soil Frost Induces Root Injury of Sugar Maple Trees

Commerford et al. (2013) Oecologia

Soil Frost Reduces Nitrogen Uptake by Sugar Maple Trees

Socci and Templer (2011); Campbell et al. (2014)

Soil Frost Reduces Nitrogen Uptake by Sugar Maple Trees

Socci and Templer (2011); Campbell et al. (2014)

Soil Frost Induces Elevated NO₃ in Leachate

- Reference
- Snow removal

Why Care about Nitrogen Leaching?

NO₃- Leaching

- Release of N₂O
- Reduced forest productivity
- Acidification of stream water
- Eutrophication (algal blooms)
- Human health effects

Reduced Snowpack and Increased Soil Freezing

• damage roots and reduce nitrogen uptake by maple trees (Comerford et al. 2013, Campbell et al. 2014)

Reduced Snowpack and Increased Soil Freezing

- damage roots and reduce nitrogen uptake by maple trees (Comerford et al. 2013, Campbell et al. 2014)
- increase nitrogen leaching (Campbell et al. 2014)

Do reduced snowpack and increased soil frost decrease ecosystem carbon storage in forests?

Photosynthesis (CO₂ Uptake)

Tree Growth (CO₂ Uptake)

Climate change in winter: 40% decrease carbon storage

Photosynthesis (CO₂ Uptake)

Tree Growth (CO₂ Uptake)

Photosynthesis (CO₂ Uptake)

Tree Growth (CO₂ Uptake)

Stem Respiration (CO₂ Losses)

Soil Respiration (CO₂ Losses)

Large Snowpack
Little soil frost

Large Snowpack
Little soil frost

Small Snowpack
Deep soil frost

Large Snowpack
Little soil frost

Small Snowpack
Deep soil frost

15% reduction C storage across northern forest

Large Snowpack
Little soil frost

Small Snowpack
Deep soil frost

* Hubbard Brook

What are combined effects of colder soils in winter + warmer soils in the growing season?

Climate Change Across Season Effects Experiment

<u>Climate Change Across Season Effects</u> CCASE

<u>Climate Change Across Season Effects</u> CCASE

Determine how warmer temperatures in the growing season and smaller snowpack affect carbon sequestration in northern forests

<u>Climate Change Across Season Effects</u> CCASE

Determine how warmer temperatures in the growing season and smaller snowpack affect carbon sequestration in northern forests

14 X 11m² plots in hardwood forest

• 2 plots: reference

• 2 plots: soils warmed 5°C in growing season

• 2 plots: soils warmed 5°C in growing season and less snow in winter

CCASE Experiment at Hubbard Brook

Soil Temperature at CCASE

Templer et al. (2017) PLOS One

Soil Temperature at CCASE

Templer et al. (2017) PLOS One

Soil Temperature at CCASE

Templer et al. (2017) PLOS One

Rebecca Sanders-Demott (PhD)

Root Damage ----

Rebecca Sanders-Demott (PhD)

Root Damage ----

Rebecca Sanders-Demott (PhD)

Rebecca Sanders-Demott (PhD)

Soil Frost Induces Nitrogen Losses

Soil Frost Induces Nitrogen Losses

Aboveground Productivity & Carbon Uptake by Trees

- Litterfall baskets: 4 per plot
- Dendrometer bands on all trees >10 cm diameter
- 21-24 trees per plot: mixed hardwood stand

Cumulative Aboveground Carbon Since 2014

Cumulative Aboveground Carbon Since 2014

Cumulative Aboveground Carbon Since 2014

Conclusions

 Winter freeze-thaw cycles injure roots and reduce nitrogen uptake by trees, not offset by growing season warming

Conclusions

- Winter freeze-thaw cycles injure roots and reduce nitrogen uptake by trees, not offset by growing season warming
- Growing season warming leads to greater tree growth and carbon uptake, but offset by soil freeze-thaw cycles in winter

Air Pollution Climate Change **Introduced Pests** Land-Use Change Urbanization

Acknowledgements

Amey Bailey, Scott Bailey, Frank Bowles, Laura Clerx,
Steve Decina, Ian Halm, Jamie Harrison, Stephanie Juice,
Brendan Leonardi, Mary Martin, Risa McNellis,
Rebecca Sanders-DeMott, Patrick Sorensen, Amy Werner,
Geoff Wilson, Jackie Wilson, Gabe Winant, Tammy Wooster

Climate Change Effects on New England's Forests

Dr. Pamela Templer

Boston University ptempler@bu.edu

