Climate Change Effects on Forest Carbon

Todd Ontl, PhD

Northern Institute of Applied Climate Science USDA Northern Forests Climate Hub Houghton, MI

todd.ontl@usda.gov

US forests:

- Absorb **15%** of CO₂ emissions from fossil fuels
- Contain 68% of terrestrial carbon stocks
- Are 90% of the land sector sequestration capacity

Natural Climate Solutions

A changing climate puts those forests and the carbon they sequester at risk

Climate change impacts forest carbon through affects on:

- Carbon <u>sequestration</u> (forest productivity)
- Carbon <u>storage</u> (biomass in trees, roots, soil)

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE GOOD:

Longer growing seasons.

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE GOOD: Longer growing seasons.

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE GOOD:

Longer growing seasons.

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE GOOD:

Longer growing seasons means more carbon uptake in forests.

Figure from Singh et al. 2017

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE GOOD:

Longer growing seasons.

THE BAD:

Shorter, warmer winters.

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE BAD: Shorter, warmer winters.

Drier conditions & drought
Warmer temperatures
drive moisture deficits

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE BAD: Shifting precipitation patterns

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

Percent Change

30 40 50 60 70 80

THE BAD:

Soil moisture stress

Projected Increases in Vapor Pressure Deficit

Impacts on tree health, forest regeneration, productivity,...

Higher values = drier plants and soils

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE GOOD:

Longer growing seasons.

THE BAD:

Shorter winters, drier conditions.

THE UGLY:

More extreme events.

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

Climate change is a "threat multiplier"

- Chronic stress
- Disturbances
- Insect pests
- Forest diseases
- Invasive species

Interactions make all the difference.

Practitioner's Menu of Strategies & Approaches for Forest Carbon Management

www.forestadaptation.org/carbon

Ontl et al. 2019. Forest management for carbon sequestration and climate adaptation. Journal of Forestry, in press.

"Considering extended time-scales can reveal synergies between adaptation and mitigation"

"Consideration of climate vulnerability may increase the effectiveness of management actions on enhancing forest carbon"

Adler Fire, Yellowstone NP (NPS)

www.nrs.fs.fed.us/atlas/tree/

"Carbon is often one of many desired forest benefits"

Strategies

- 1. Maintain or increase extent of forest ecosystems.
- 2. Sustain fundamental ecological functions.
- Reduce carbon losses from natural disturbance, including wildfire.
- 4. Enhance forest recovery following disturbance.
- 5. Prioritize management of locations that provide high carbon value across the landscape.
- 6. Maintain or enhance existing carbon stocks while retaining forest character.
- 7. Enhance or maintain sequestration capacity through significant forest alterations.

EQIP PRACTICE: PRESCRIBED BURNING 338

Strategy 3: Reduce carbon losses from natural disturbance, including wildfire

<u>Approach 3.1</u> Restore or maintain fire in fire-adapted ecosystems

<u>Approach 3.2</u> Establish natural or artificial fuelbreaks to slow the spread of catastrophic fire

<u>Approach 3.3</u> Alter forest structure or composition to reduce the risk, severity, or extent of wildfire

<u>Approach 3.4</u> Reduce the risk of tree mortality from biological or climatic stressors in fire-prone systems

<u>Approach 3.5</u> Alter forest structure to reduce the risk, severity, or extent of wind &ice damage

EQIP PRACTICE: WOODY RESIDUE TREATMENT 384

Strategy 3: Reduce carbon losses from natural disturbance, including wildfire

<u>Approach 3.1</u> Restore or maintain fire in fire-adapted ecosystems <u>Approach 3.2</u> Establish natural or artificial fuelbreaks to slow the spread of catastrophic fire

<u>Approach 3.3</u> Alter forest structure or composition to reduce the risk, severity, or extent of wildfire

<u>Approach 3.4</u> Reduce the risk of tree mortality from biological or climatic stressors in fire-prone systems

<u>Approach 3.5</u> Alter forest structure to reduce the risk, severity, or extent of wind &ice damage

CONSERVATION ENHANCEMENT ACTIVITY

E666130Z

Increase on-site carbon storage

Conservation Practice 666: Forest Stand Improvement

Strategy	Approach	Tactic (from CSP)
Strategy 2: Sustain fundamental ecological functions	2.1 Reduce impacts to soils and nutrient cycling	Close unneeded roads and limit off-road vehicular traffic to avoid displacing the forest litter layer.
Strategy 2: Sustain fundamental ecological functions	2.1 Reduce impacts to soils and nutrient cycling	Adopt techniques for maintaining and/or improving soil quality, specifically retention of organic carbon.
Strategy 6: Maintain or enhance existing carbon stocks while retaining forest character	6.1 Increase structural complexity through retention of biological legacies in living and dead wood	Retain all snags and downed woody debris of 6" diameter or larger at the base.
Strategy 6: Maintain or enhance existing carbon stocks while retaining forest character	6.1 Increase structural complexity through retention of biological legacies in living and dead wood	Identify leave-trees or clumps of trees that will be retained on site throughout their life span.
Strategy 7: Enhance or maintain sequestration capacity through significant forest alterations	7.2 Alter forest composition or structure to maximize carbon	Transition from even-aged to unevenaged management.

CONSERVATION ENHANCEMENT ACTIVITY E612130Z

Planting for high carbon sequestration rate

Conservation Practice 612: Tree/Shrub Establishment

Strategy	Approach	Tactic (from CSP)
Strategy 1: Maintain or increase extent of forest ecosystems	1.2 Reforest lands that have been deforested and afforest suitable lands	Trees and shrubs will be planted on selected areas within any land use.
Strategy 2: Sustain fundamental ecological functions	2.5 Reduce competition for moisture, nutrients, and light	Trees and shrubs will be planted in areas with adequate sunlight.
Strategy 4: Enhance forest recovery following disturbance	4.2 Restore sites with a diversity of species that are adapted to future conditions	Trees will be selected for their rate of growth and suitability for use in durable manufactured products as well as their adaptability to site conditions.
Strategy 6: Maintain or enhance existing carbon stocks while retaining forest character	6.2 Increase stocking on well- stocked or understocked forest lands	Increase stocking levels in forests that are not fully stocked.

EQIP PRACTICE: TREE/SHRUB ESTABLISHMENT 612

Strategy 6: Maintain or enhance existing carbon stocks while retaining forest character

- 6.1 Increase structural complexity through retention of biological legacies in living and dead wood
- 6.2 Increase stocking on well-stocked or understocked forest lands
- 6.3 Increase harvest frequency or intensity due to greater risk of tree mortality
- 6.4 Disfavor species that are distinctly maladapted
- 6.5 Manage for existing species and genotypes with wide moisture and temperature tolerances
- 6.6 Promote species and structural diversity to enhance carbon capture and storage efficiency
- 6.7 Use seeds, germplasm, and other genetic material from across a greater geographic range