CLIMATE IMPACTS –
NORTHERN WISCONSIN/WESTERN UPPER MICHIGAN
From the Adaptation Workbook: www.adaptationworkbook.org/explore-impacts

This area includes the Laurentian Mixed Forest Ecological Province within northern Wisconsin and the western Upper Peninsula of Michigan. The area covers Albert’s Ecological Sections VIII, IX, and X in Wisconsin and Ecological Section IX in Michigan.

Summary of Climate Impacts (details and citations on subsequent pages):
Temperatures in northern Wisconsin and western Michigan will increase between 3 °F and 9 °F by the end of the century, with more warming during winter.

Total snowfall, snow depth, and snowpack duration are all expected to decline substantially in northern Wisconsin and western Michigan by the end of the century.

Northern Wisconsin and western Michigan will have 30-50 fewer days of frozen ground during the winter by the end of the century.

The growing season in northern Wisconsin and western Upper Michigan will increase by 20 to 70 days by the end of the century.

Intense precipitation events will continue to become more frequent in northern Wisconsin and western Upper Michigan.

Soil moisture patterns in northern Wisconsin and western Upper Michigan will change, with drier soil conditions later in the growing season.

Climate conditions will increase fire risks in northern Wisconsin and western Upper Michigan by the end of the century.

Many invasive species, insect pests, and pathogens in northern Wisconsin and western Upper Michigan will increase or become more damaging.

Boreal species in northern Wisconsin and western Upper Michigan will face increasing stress from climate change.

Southern or temperate species in northern Wisconsin and western Upper Michigan will be favored by climate change.

Forest productivity in northern Wisconsin and western Upper Michigan will increase across the assessment area.

Low-diversity systems are at greater risk from climate change.

Species in fragmented landscapes will have less opportunity to migrate in response to climate change.

Systems that are limited to particular environments will have less opportunity to migrate in response to climate change.

Systems that are more tolerant of disturbance have less risk of declining on the landscape.

<table>
<thead>
<tr>
<th>Forest system</th>
<th>Potential impacts</th>
<th>Adaptive capacity</th>
<th>Vulnerability</th>
<th>Evidence</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspen-birch</td>
<td>Moderate-Negative</td>
<td>Moderate</td>
<td>Moderate-High</td>
<td>Medium-High</td>
<td>Medium-High</td>
</tr>
<tr>
<td>Jack pine</td>
<td>Moderate-Negative</td>
<td>Moderate-High</td>
<td>Moderate</td>
<td>Medium</td>
<td>Medium-High</td>
</tr>
<tr>
<td>Lowland conifers</td>
<td>Negative</td>
<td>Moderate-Low</td>
<td>High</td>
<td>Medium</td>
<td>Medium-High</td>
</tr>
<tr>
<td>Lowland-riparian hardwoods</td>
<td>Moderate-Negative</td>
<td>Moderate</td>
<td>Moderate-High</td>
<td>Limited-Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Northern hardwoods</td>
<td>Moderate-Negative</td>
<td>Moderate-High</td>
<td>Moderate</td>
<td>Medium-High</td>
<td>Medium</td>
</tr>
<tr>
<td>Oak</td>
<td>Moderate</td>
<td>Moderate-High</td>
<td>Moderate-Low</td>
<td>Medium-High</td>
<td>Medium-High</td>
</tr>
<tr>
<td>Red pine</td>
<td>Moderate-Negative</td>
<td>Moderate-Low</td>
<td>Moderate-High</td>
<td>Medium-High</td>
<td>Medium-High</td>
</tr>
<tr>
<td>Upland spruce-fir</td>
<td>Negative</td>
<td>Moderate-Low</td>
<td>High</td>
<td>Medium-High</td>
<td>Medium-High</td>
</tr>
<tr>
<td>White pine</td>
<td>Moderate-Positive</td>
<td>High</td>
<td>Moderate-Low</td>
<td>Medium-High</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Temperatures in northern Wisconsin and western Michigan will increase between 3 °F and 9 °F by the end of the century, with more warming during winter. All global climate models project that temperatures will increase with continued increases in atmospheric greenhouse gas concentrations.

Total snowfall, snow depth, and snowpack duration are all expected to decline substantially in northern Wisconsin and western Michigan by the end of the century. A variety of models project that across the Upper Midwest, more winter precipitation will be delivered as rain, more snow will melt between snowfall events, and the snowpack will not be as deep or consistent. Lake-effect snowfall may increase in the short-term, but these events may convert to rain as temperatures increase.

Northern Wisconsin and western Michigan will have 30-50 fewer days of frozen ground during the winter by the end of the century. Cold-season soil temperatures are projected to increase between 1.8 and 5.4 °F by the end of the century, and total frost depth is projected to decline by 40 to 80 percent across northern Wisconsin and western Upper Michigan by the end of the century. These conditions could increase water infiltration into the soil and reduce runoff, but they may also lead to greater soil water losses through increased evapotranspiration. The decrease in snowcover and frozen soil is expected to affect land management operations and a variety of ecosystem processes, including decomposition activity, nutrient cycling, the onset of the growing season, and other phenological factors.

The growing season in northern Wisconsin and western Upper Michigan will increase by 20 to 70 days by the end of the century. Evidence at both global and local scales indicates that growing seasons have been getting longer, and this trend is projected to become even more pronounced over the next century. As seasons shift so that spring arrives earlier and fall extends later into the year, phenology may shift for plant species that rely on temperature as a cue for the timing of leaf-out, reproductive maturation, and other developmental processes. Longer growing seasons could also result in greater growth and productivity of trees and other vegetation, but only if balanced by available water and nutrients.

Intense precipitation events will continue to become more frequent in in northern Wisconsin and western Upper Michigan. Heavy precipitation events have been increasing in number and severity in the upper Midwest for the past several decades, and many models agree that this trend will continue over the next century. Most heavy precipitation events occur during summer in northern Wisconsin and western Upper Michigan. Estimates include a 23% increase in rainfall events of greater than 1 inch, and 0.6 to more than 2 additional days per year of precipitation greater than 1 inch by the end of the century. The magnitude or frequency...
of flooding could also potentially increase in the winter and spring due to increases in total runoff and peak stream flow during those times. Increases in runoff after heavy precipitation events could also lead to an increase in soil erosion.

M. Janowiak, L. Iverson, and others. 2014. Forest Ecosystem Vulnerability Assessment for northern Wisconsin and western Upper Michigan. USDA Forest Service Northern Research Station.


Soil moisture patterns in northern Wisconsin and western Upper Michigan will change, with drier soil conditions later in the growing season.

Large variation exists for projected changes in precipitation for in northern Wisconsin and western Upper Michigan. Although individual model projections may differ, there is general agreement that annual precipitation is expected to remain consistent or increase slightly during the 21st century. Models also tend to agree that precipitation patterns between seasons may shift substantially. Precipitation increases are generally expected to be larger in winter and spring, while summer precipitation is projected to increase slightly or decrease sharply. As seasonal precipitation changes, it is reasonable to expect that soil moisture regimes will also change. Longer growing seasons and warmer temperatures may also result in greater evapotranspiration losses and lower soil-water availability later in the growing season. Model outputs indicate that forests in the Upper Midwest may become increasingly moisture-limited under climate change. This may be the case particularly in locations where soils and landforms do not allow precipitation from intense events to be retained. Model projections differ greatly, however, and it is also possible that the assessment area will have an increase in precipitation sufficient to offset increases in evapotranspiration.

M. Janowiak, L. Iverson, and others. 2014. Forest Ecosystem Vulnerability Assessment for northern Wisconsin and western Upper Michigan. USDA Forest Service Northern Research Station.

Climate conditions will increase fire risks in northern Wisconsin and western Upper Michigan by the end of the century.

At a global scale, the scientific consensus is that fire risk will increase by 10 to 30 percent due to higher summer temperatures. For the early part of the 21st century, there is low agreement in this trend across climate models. By the end of the century, however, most models project an increase in wildfire probability, particularly for boreal forests, temperate coniferous forests, and temperate broadleaf forests. Studies from southern Canada also project more active wildfire regimes in the future. In addition to the direct effects of temperature and precipitation, increases in fuel loads from pest-induced mortality or blowdown events could increase fire risk, but the relationship between these factors can be complex. Forest fragmentation and unknown future wildfire management decisions also make fire projections more uncertain in northern Wisconsin and western Upper Michigan. Additionally, we do not have clear projections of how the timing or nature of the fire regimes may change—the proportion of surface fires to crown fires, for example.

M. Janowiak, L. Iverson, and others. 2014. Forest Ecosystem Vulnerability Assessment for northern Wisconsin and western Upper Michigan. USDA Forest Service Northern Research Station.

Many invasive species, insect pests, and pathogens in northern Wisconsin and western Upper Michigan will increase or become more damaging.

Changes in climate may allow some nonnative plant species, insect pests, and pathogens to expand their ranges farther north as the climate warms and the Upper Midwest loses some of the protection offered by a traditionally cold climate and short growing season. The abundance and distribution of some nonnative plant species may be able to increase directly in response to a warmer climate and also indirectly through increased invasion of stressed or disturbed forests. Similarly, forest pests and pathogens are generally able to respond rapidly to changes in climate and also disproportionately damage stressed ecosystems. Thus, there is high potential for pests and pathogens to interact with other climate-mediated stressors. Unfortunately, we lack basic information on the climatic thresholds that apply to many invasive plants, insect pests, and pathogens. Further, our ability to predict the mechanisms of infection (in the case of pests and diseases), dispersal, and spread for specific agents remains low. Furthermore, it is not possible to predict all future nonnative species, pests, or pathogens that may enter northern Wisconsin and western Upper Michigan area during the 21st century.

M. Janowiak, L. Iverson, and others. 2014. Forest Ecosystem Vulnerability Assessment for northern Wisconsin and western Upper Michigan. USDA Forest Service Northern Research Station.
Boreal species in northern Wisconsin and western Upper Michigan will face increasing stress from climate change. Impact models agree that boreal or northern species will experience reduced suitable habitat and biomass across the Upper Midwest, and that they may be less able to take advantage of longer growing seasons and warmer temperatures than temperate forest communities. Across northern latitudes, it is generally expected that warmer temperatures will be more favorable to species that are located at the northern extent of their range and less favorable to those at the southern extent. Climate impact models project a decline in suitable habitat and landscape-level biomass for northern species such as black spruce, white spruce, tamarack, jack pine, yellow birch, and paper birch. Boreal species may remain in areas with favorable soils, management, or landscape features. Additionally, northern species may be able to persist if competitor species are unable to colonize these areas.

M. Janowiak, L. Iverson, and others. 2014. *Forest Ecosystem Vulnerability Assessment for northern Wisconsin and western Upper Michigan*. USDA Forest Service Northern Research Station.

Southern or temperate species in northern Wisconsin and western Upper Michigan will be favored by climate change. Impact models agree that many temperate species will experience increasing suitable habitat and biomass across northern Wisconsin and western Upper Michigan, and that longer growing seasons and warmer temperatures will lead to productivity increases for temperate forest types. The list of species projected to increase includes bitternut hickory, black oak, bur oak, white oak, and a variety of minor southern species. Models also indicate that deciduous forest types have the potential for large productivity increases across the Upper Midwest. In addition, suitable habitat may become available for species not currently found in northern Wisconsin and western Upper Michigan (e.g., northern catalpa, pignut hickory, and post oak) by the end of the century. Habitat fragmentation and dispersal limitations could hinder the northward movement of southern species, despite the increase in habitat suitability. Most species can be expected to migrate more slowly than their habitats will shift. Pests and diseases such as emerald ash borer and Dutch elm disease are also expected to limit some species projected to increase.

M. Janowiak, L. Iverson, and others. 2014. *Forest Ecosystem Vulnerability Assessment for northern Wisconsin and western Upper Michigan*. USDA Forest Service Northern Research Station.

Forest productivity in northern Wisconsin and western Upper Michigan will increase across the assessment area. Numerous studies have tried to project the effects of climate change on forest productivity and carbon balance through modeling simulations and manipulative experiments. Studies of CO2 fertilization indicate that productivity may generally increase across the Upper Midwest. Warmer temperatures may speed nutrient cycling and increase photosynthetic rates for most tree species. Longer growing seasons could also result in greater growth and productivity of trees and other vegetation, but only if sufficient water and nutrients are available. Episodic disturbances such as fires, wind events, droughts, and pest outbreaks may reduce productivity in certain areas over different time scales. In addition, lags in the migration of species to newly suitable habitat may reduce productivity until a new equilibrium is reached. For these reasons, future forest productivity is dependent upon complex interactions among the degree of warming, ecosystem water balance, and disturbance events.

M. Janowiak, L. Iverson, and others. 2014. *Forest Ecosystem Vulnerability Assessment for northern Wisconsin and western Upper Michigan*. USDA Forest Service Northern Research Station.

Low-diversity systems are at greater risk from climate change. Studies have consistently shown that diverse systems have exhibited greater resilience to extreme environmental conditions and greater potential to recover from disturbance than less diverse communities. This relationship makes less diverse communities inherently more susceptible to future changes and stressors. The diversity of potential responses of a system to environmental change (response diversity), is a critical component of ecosystem resilience. Response diversity is generally reduced in less diverse ecological systems. Genetic diversity within species is also critical for the ability of populations to adapt to climate change, because species with high genetic variation have better odds of producing individuals that can withstand extreme events and adapt to changes over time.

Species in fragmented landscapes will have less opportunity to migrate in response to climate change. Habitat fragmentation can hinder the ability of tree species to migrate to more suitable habitat on the landscape, especially if the surrounding area is nonforested. Modeling results indicate that mean centers of suitable habitat for tree species will migrate between 60 and 350 miles by the year 2100 under a high emissions scenario and between 30 and 250 miles under milder climate change scenarios. Based on data gathered for seedling distributions, it has been estimated that many northern tree species could possibly migrate northward at a rate of 60 miles per century. Fragmentation makes this disparity even more challenging, because the landscape is essentially less permeable to migration.


Systems that are limited to particular environments will have less opportunity to migrate in response to climate change.

Some species and forest types are confined to particular habitats on the landscape, whether through requirements for hydrologic regimes, soil types, or other reasons. Similar to species occurring in fragmented landscapes, isolated species and systems face additional barriers to migration. Widespread species may also have particular habitat requirements. For example, sugar maple is often limited to soils that are rich in nutrients like calcium, so this species may actually have less available suitable habitat than might be projected solely from temperature and precipitation patterns. Riparian forests are not expected to be able to migrate to upland areas because many species depend on seasonal flood dynamics for regeneration and a competitive advantage. Similarly, lowland conifer swamps contain a unique mix of species that are adapted to low pH values, peat soils, and particular water table regimes. These species face additional challenges in migration compared to more-widespread species with broad ecological tolerances.


Systems that are more tolerant of disturbance have less risk of declining on the landscape

Disturbances such as wildfire, flooding, and pest outbreaks are expected to increase in the future. Forests that are adapted to gap-phase disturbances, with stand-replacing events occurring over hundreds or thousands of years, may be less tolerant of more frequent widespread disturbances. Mesic hardwood forests can create conditions that could buffer against fire and drought to some extent, but these systems are not expected to do well if soil moisture declines significantly. Forest systems that are more tolerant of drought, flooding, or fire are expected to be better able to withstand climate-driven disturbances. This principle holds true only to a given point, because it is also possible for disturbance-adapted systems to experience too much disruption. For example, dry pine forests and woodlands might benefit from drier conditions with more frequent fire, but these systems might also convert to savannas or open grasslands if fire becomes too frequent or drought becomes too severe.
