Why temperature matters: Implications for forest watersheds & services

Nicolas Zègre

West Virginia University Mountain Hydrology Lab

Carson Wright (WV DEP)

David Young (Green Rivers)

Leighia Eggett (Peace Corps)

1884

The Water Cycle Evapotranspiration from leaf surface Interception Water vapour water travels through plant Surface Soil water flow Croundwater flow water flow Evaporation water absorbed by roots

Hendriks 2010

Controls on hydrology

Controls on hydrology

Climate, Landcover, &

Controls on hydrology Climate, <u>Landcover</u>, & Morphology

Controls on hydrology Climate, Landcover, & Morphology

Why temperature matters

Why temperature matters

Clausius-Clapeyron relation: warmer air holds more water;

Feedbacks - Water as GHG;

Acceleration in water cycle – storms, floods, & droughts;

How sensitive are forest watersheds (& their services) to changes in climate?

Atmospheric water vapor Water stored in the atmosphere

- High spatial variability;
- *Increasing* between 60°S & 75°N [1]

Precipitation

Global *increases by* 1-3% [2]

Transpiration

- Plant water uptake;
- Controlled by solar radiation, moisture, vapor gradient, & plant physiology;

Generally *increasing*

Growing Season Length Look back to the founders of environmental lit & philosophy:

WALDEN:

OR.

BY HENRY D. THOREAU,

THE WOODS.

Historical variability

Intensification Study

Cheat River [3,700 km²/1,428 mi²]

Max elevation: 1,482 m / 4,863 ft Temperate forest - mixed hardwood

Precipitation: 1,480 mm / 58 in.

Air Temp: 9.3°C / 49°F

• 3 climate scenarios to characterize an uncertain

future (IPCC);

- Monthly air temp & precipitation from the Coupled Model Inter-comparison Project;
- Input into hydrologic model calibrated using historical data (1950-2005) to predict future hydrology;

What did we learn?

Air temp

Precipitation

Streamflow

Warmer air means *more* rain & more runoff

Implications of Intensification

Ecological

- Resilience;
- Species changes (transpiration, soil chemistry);
- Nutrients, sediment, water quality;
- BMP's, TMDL;
- Aquatic habitat;
- Carbon sequestration;
- Etc.

Societal

Forest ecosystem services;

- Flood attenuation;
- Nutrients, CO2;
- Drinking water, irrigation, electricity, etc.;
- Fiber & food;
- Forest productivity, management, industry;
- Infrastructure;
- Etc.

Dr. Nicolas Zègre
Mountain Hydrology Lab
Davis College
West Virginia University

http://www.mountainhydrologylab.com/ nicolas.zegre@mail.wvu.edu

Closing thoughts

"We realize we need to prepare for a future when carbon dioxide emissions must be reduced".

"Cutting greenhouse gas emissions while keeping the lights on for a growing population is a huge but critical challenge. We have to believe it is a challenge we can meet." - Ben van Beurden, CEO

"Energy and climate represent two of the most important business challenges of this century."

Closing thoughts

"The impacts of climate change may increase the frequency, scale, and complexity of future missions".

"Climate change is a national security challenge...it will affect the type, scope, and location of future Navy missions".

